
*For correspondence:

tso24@cam.ac.uk

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 13

Received: 15 August 2019

Accepted: 17 June 2020

Published: 14 July 2020

Reviewing editor: Stephanie

Palmer, University of Chicago,

United States

Copyright Rule et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Stable task information from an unstable
neural population
Michael E Rule1, Adrianna R Loback1, Dhruva V Raman1, Laura N Driscoll2,
Christopher D Harvey3, Timothy O’Leary1*

1Department of Engineering, University of Cambridge, Cambridge, United
Kingdom; 2Department of Electrical Engineering, Stanford University, Stanford,
United States; 3Department of Neurobiology, Harvard Medical School, Boston,
United States

Abstract Over days and weeks, neural activity representing an animal’s position and movement

in sensorimotor cortex has been found to continually reconfigure or ‘drift’ during repeated trials of

learned tasks, with no obvious change in behavior. This challenges classical theories, which assume

stable engrams underlie stable behavior. However, it is not known whether this drift occurs

systematically, allowing downstream circuits to extract consistent information. Analyzing long-term

calcium imaging recordings from posterior parietal cortex in mice (Mus musculus), we show that

drift is systematically constrained far above chance, facilitating a linear weighted readout of

behavioral variables. However, a significant component of drift continually degrades a fixed

readout, implying that drift is not confined to a null coding space. We calculate the amount of

plasticity required to compensate drift independently of any learning rule, and find that this is

within physiologically achievable bounds. We demonstrate that a simple, biologically plausible local

learning rule can achieve these bounds, accurately decoding behavior over many days.

Introduction
A core principle in neuroscience is that behavioral variables are represented in neural activity. Such

representations must be maintained to retain learned skills and memories. However, recent work has

challenged the idea of long-lasting neural codes (Rumpel and Triesch, 2016). In our recent work

(Driscoll et al., 2017), we found that neural activity–behavior relationships in individual posterior

parietal cortex (PPC) neurons continually changed over many days during a repeated virtual naviga-

tion task. Similar ‘representational drift’ has been shown in other neocortical areas and hippocampus

(Attardo et al., 2015; Ziv et al., 2013; Levy et al., 2019). Importantly, these studies showed that

representational drift is observed in brain areas essential for performing the task long after the task

has been learned.

These experimental observations raise the major question of whether drifting representations are

fundamentally at odds with the storage of stable memories of behavioral variables (e.g.

Ganguly and Carmena, 2009; Tonegawa et al., 2015). Theoretical work has proposed that a consis-

tent readout of a representation can be achieved if drift in neural activity patterns occurs in dimen-

sions of population activity that are orthogonal to coding dimensions - in a ‘null coding space’

(Rokni et al., 2007; Druckmann and Chklovskii, 2012; Ajemian et al., 2013; Singh et al., 2019).

This can be facilitated by neural representations that consist of low-dimensional dynamics distributed

over many neurons (Montijn et al., 2016; Gallego et al., 2018; Hennig et al., 2018;

Degenhart et al., 2020). Redundancy could therefore permit substantial reconfiguration of tuning in

single cells without disrupting neural codes (Druckmann and Chklovskii, 2012; Huber et al., 2012;

Kaufman et al., 2014; Ni et al., 2018; Kappel et al., 2018). However, the extent to which drift is

confined in such a null coding space remains an open question.
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Purely random drift, as would occur if synaptic strengths and other circuit parameters follow inde-

pendent random walks, would eventually disrupt a population code. Several studies have provided

evidence that cortical synaptic weights and synaptic connections exhibit statistics that are consistent

with a purely random process (Moczulska et al., 2013; Loewenstein et al., 2011;

Loewenstein et al., 2015). Indeed, our previous experimental findings reveal that drift includes cells

that lose representations of task relevant variables, suggesting that some component of drift affects

coding dimensions (Driscoll et al., 2017).

Together, these observations raise fundamental questions that have not been directly addressed

with experimental data, and which we address here. First, to what extent can ongoing drift in task

representations be confined to a null coding space over extended periods while maintaining an

accurate readout of behavioral variables in a biologically plausible way? Second, how might we esti-

mate how much additional ongoing plasticity (if any) would be required to maintain a stable readout

of behavioral variables, irrespective of specific learning rules? Third, is such an estimate of ongoing

plasticity biologically feasible for typical levels of connectivity, and typical rates of change observed

in synaptic strengths? Fourth, can a local, biologically plausible plasticity mechanism tune readout

weights to identify a maximally stable coding subspace and compensate any residual drift away from

this subspace?

We addressed these questions by modelling and analyzing data from Driscoll et al., 2017. This

dataset consists of optical recordings of calcium activity in populations of hundreds of neurons in

Posterior Parietal Cortex (PPC) during repeated trials of a virtual reality T-maze task (Figure 1a).

Mice were trained to associate a visual cue at the start of the maze with turning left or right at a

T-junction. Behavioral performance and kinematic variables were stable over time with some per-ses-

sion variability (mouse four exhibited a slight decrease in forward speed; Figure 2—figure supple-

ment 1). Full experimental details can be found in the original study.

Previous studies identified planning and choice-based roles for PPC in the T-maze task

(Harvey et al., 2012), and stable decoding of such binary variables was explored in Driscoll et al.,

2017. However, in primates PPC has traditionally been viewed as containing continuous motor-

related representations (Andersen et al., 1997; Andersen and Buneo, 2002; Mulliken et al., 2008),

and recent work (Krumin et al., 2018; Minderer et al., 2019) has confirmed that PPC has an equally

motor-like role in spatial navigation in rodents (Calton and Taube, 2009). It is therefore important

to revisit these data in the context of continuous kinematics encoding.

Previous analyses showed that PPC neurons activated at specific locations in the maze on each

day. When peak activation is plotted as a function of (linearized) maze location, the recorded popu-

lation tiles the maze, as shown in Figure 1b. However, maintaining the same ordering in the same

population of neurons revealed a loss of sequential activity over days to weeks (top row of

Figure 1b). Nonetheless, a different subset of neurons could always be found to tile the maze in

these later experimental sessions. In all cases, the same gradual loss of ordered activation was

observed (second and third rows, Figure 1b). Figure 1c shows that PPC neurons gain or lose selec-

tivity and occasionally change tuning locations. Together, these data show that PPC neurons form a

continually reconfiguring representation of a fixed, learned task.

PPC representations facilitate a linear readout
We asked whether precise task information can be extracted from this population of neurons,

despite the continual activity reconfiguration evident in these data. We began by fitting a linear

decoder for each task variable of interest (animal location, heading, and velocity) for each day. This

model has the form xðtÞ¼M>zðtÞ, where xðtÞ is the time-binned estimate of position, velocity or head-

ing (view angle) in the virtual maze, M is a vector of weights, and zðtÞ is the normalized time-binned

calcium fluorescence (Materials and methods: Decoding analyses).

Example decoding results for two mice are shown in Figure 2a, and summaries of decoding per-

formance for four mice in Figure 2b. Position, speed, and view angle can each be recovered with a

separate linear model. The average mean absolute decoding error for all animals included in the

analysis was 47.2 cm ±8.8 cm (mean ±1 standard deviation) for position, 9.6 cm/s ±2.2 cm/s for

speed, and 13.8˚ ± 4.0˚ for view angle (Materials and methods: Decoding analyses).

We chose a linear decoder specifically because it can be interpreted biologically as a single ‘read-

out’ neuron that receives input from a few hundred PPC neurons, and whose activity approximates a

linear weighted sum. The fact that a linear decoder recovers behavioral variables to reasonable
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accuracy suggests that brain areas with sufficiently dense connectivity to PPC can extract this infor-

mation via simple weighted sums.

The number of PPC neurons recorded is a subset of the total PPC population. To assess whether

additional neurons might improve decoding accuracy, we evaluated decoding performance of ran-

domly drawn subsets of recorded neurons (Figure 2c). Extrapolation of the decoding performance

Cue: wall pattern

Left Right

Delay:

no cues

Reward

Virtual T-maze task

M1 unit 75

0% 100%

M3 unit 19

0% 100%

M4 unit 761

0% 100%

Task Location

M3 unit 1278

0% 100%

M3 unit 930

0% 100%

Figure 1. Neural population coding of spatial navigation reconfigures over time in a virtual-reality maze task. (a) Mice were trained to use visual cues to

navigate to a reward in a virtual-reality maze; neural population activity was recorded using Ca2+ imaging Driscoll et al., 2017. (b) (Reprinted from

Driscoll et al., 2017) Neurons in PPC (vertical axes) fire at various regions in the maze (horizontal axes). Over days to weeks, individual neurons change

their tuning, reconfiguring the population code. This occurs even at steady-state behavioral performance (after learning). (c) Each plot shows how

location-averaged normalized activity changes for single cells over weeks. Missing days are interpolated to the nearest available sessions, and both left

and right turns are combined. Neurons show diverse changes in tuning over days, including instability, relocation, long-term stability, gain/loss of

selectivity, and intermittent responsiveness.

Ó 2017 Elsevier. Panel B reprinted from Driscoll et al., 2017 with permission from Elsevier. They are not covered by the CC-BY 4.0 licence and further

reproduction of this panel would need permission from the copyright holder.
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suggested that better performance might be possible with a larger population of randomly sampled

PPC neurons than we recorded.

It is possible that a random sample of neurons misses the ‘best’ subset of cells for decoding task

variables. When we restricted to optimal subsets of neurons we found that performance improved

rapidly up to ~30 neurons and saturated at ~30%(50–100 neurons) of the neurons recorded

(Figure 2d). On a given day task variables could be decoded well with relatively few (~10) neurons.

However, the identity of the neurons in this optimal subset changed over days. For all subjects, no

more than 1% of cells were consistently ranked in the top 10%, an no more than 13% in the top

50%. We confirmed that this instability was not due to under-regularization in training

(Materials and methods: Best K-Subset Ranking).

Of the neurons with strong location tuning, Driscoll et al., 2017 found that 60% changed their

location tuning over two weeks and a total of 80% changed over the 30- day period examined. We

find that even the small remaining ‘stable’ subset of neurons exhibited daily variations in their Sig-

nal-to-Noise Ratio (SNR) with respect to task decoding, consistent with other studies

(Carmena et al., 2005). For example, no more than 8% of neurons that were in the top 25% in terms

of tuning-peak stability were also consistently in the top 25% in terms of SNR for all days. If a neuron

becomes relatively less reliable, then the weight assigned may become inappropriate for decoding.
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Figure 2. A linear decoder can extract kinematic information from PPC population activity on a single day. (a) Example decoding performance for a

single session for mice 4 and 5. Grey denotes held-out test data; colors denote the prediction for the corresponding kinematic variable. (b) Summary of

the decoding performance on single days; each point denotes one mouse. Error bars denote one standard deviation over all sessions that had at least

N¼200 high-confidence PPC neurons for each mouse. (Mouse two is excluded due to an insufficient number of isolated neurons). Chance level is ~1.5

m for forward position, and varies across subjects for forward velocity (~0.2–0.25 m/s) and head direction (~20-30 ). (c) Extrapolation of the performance

of the static linear decoder for decoding position as a function of the number of PPC neurons, done via Gaussian process regression

(Materials and methods). Red ’�’ marks denote data; solid black line denotes the inferred mean of the GP. Shaded regions reflect ±1.96s Gaussian

estimates of the 95th and 5th percentiles. (d) Same as panel (c), but where the neurons have been ranked such that the ‘best’ subset of size 1�K�N is

chosen, selected by greedy search based on explained variance (Materials and methods: Best K-Subset Ranking).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Behavioral stability.
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This affects our analyses, and would also physiologically affect a downstream neuron with fixed syn-

aptic weights.

Representational drift is systematic and significantly degrades a fixed
readout
Naively fitting a linear model to data from any given day shows that behavioral variables are

encoded in a way that permits a simple readout, but there is no guarantee that this readout will sur-

vive long-term drift in the neural code. To illustrate this, we compared the decoding performance of

models fitted on a given day with decoders optimized on data from earlier or later days. We

restricted this analysis to those neurons that were identified with high confidence on all days consid-

ered. We found that decoding performance decreased as the separation between days grew

(Figure 3a). This is unsurprising given the extent of reconfiguration reported in the original study

(Driscoll et al., 2017) and depicted in Figure 1. Furthermore, because task-related PPC activity is

distributed over many neurons, many different linear decoders can achieve similar error rates due to

the degeneracy in the representation (Rokni et al., 2007; Kaufman et al., 2014; Montijn et al.,

2016). Since the directions in population activity used for inter-area communication might differ

from the directions that maximally encode stimulus information in the local population (Ni et al.,

2018; Semedo et al., 2019), single-day decoders might overlook a long-term stable subspace used

for encoding and communication. This motivates the question of whether a drift-invariant linear

decoder exists and whether its existence is biologically plausible.

To address this, we tested the performance of a single linear decoder optimized across data from

multiple days. We concatenated data from different days using the same subset of PPC neurons

(Figure 3b). In all four subjects, we found that such fixed multiple-day linear ‘concatenated’

decoders could recover accurate task variable information despite ongoing changes in PPC neuron

tuning. However, the average performance of the multiple-day decoders was significantly worse

than single-day linear decoders for each day (Figure 3c).

The existence of a fixed, approximate decoder implies a degenerate representation of task varia-

bles in the population activity of PPC neurons. In other words, there is a family of linear decoders

that can recover behavioral variables while allowing weights to vary in some region of weight space.

This situation is illustrated in Figure 3b, which depicts regions of good performance of single-day

linear decoders as ellipsoids. The existence of an approximate concatenated decoder implies that

these ellipsoids intersect over several days for some allowable level of error in the decoder. For a

sufficiently redundant neural code, one might expect to find an invariant decoder for some specified

level of accuracy even if the underlying code drifts. However, there are many qualitative ways in

which drift can occur in a neural code: it could resemble a random walk, as some studies suggest

(Moczulska et al., 2013; Loewenstein et al., 2011; Loewenstein et al., 2015), or there could be a

systematic component. Is the accuracy we observe in the concatenated decoder expected for a ran-

dom walk? In all subjects, we found that a concatenated decoder performed substantially better on

experimental data than on randomly drifting synthetic data with matched sparseness and matched

within/between-session variability (Figure 3d). This suggests that the drift in the neural data is not

purely random.

We further investigated the dynamics of drift by quantifying the direction of changes in neural

variability over time (Figure 4c,d, Materials and methods: Drift alignment). We found that drift is

indeed aligned above chance to within-session neural population variability. This suggests that the

biological mechanisms underlying drift are in part systematic and constrained by a requirement to

keep a consistent population code over time. In comparison, the projection of drift onto behavior-

coding directions was small, but still above chance. This is consistent with the hypothesis that ongo-

ing compensation might be needed for a long-term stable readout.

To quantify the systematic nature of drift further, we modified the null model to make drift par-

tially systematic by constraining the null-model drift within a low rank subspace (Figure 4—figure

supplement 1). This reflects a scenario in which only a few components of the population code

change over time. We found that the performance of a concatenated decoder for low-rank drift bet-

ter approximated experimental data. For three of the four mice we could match concatenated

decoder performance when the dimension of the drift process was constrained within a range of 14–

26, a relatively small fraction (around 20%) of the components of the full population.

Rule et al. eLife 2020;9:e51121. DOI: https://doi.org/10.7554/eLife.51121 5 of 16

Short report Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.51121


Mouse 4Mouse 3
%

E
rr

o
r 

in
cr

e
a

se

E
rr

o
r 

(m
)

E
rr

o
r 

(m
/s

)
E

rr
o

r 
(°

)

…

Training data

Testing data

z

x Concatenated

model

x

z

Single-day

model

Concatenated decoder

Region of 

'good' models

Optimal single-day decoders

Good multi-day decoder

Δ Days Δ Days

Shaded = 95% con fi dence interval Null model (random drift)Data

Figure 3. Single-day decoders generalize poorly to previous and subsequent days, but multi-day decoders exist with good performance. (a) Blue: %

increase in error over the optimal decoder for the testing day (mouse 3, 136 neurons; mouse 4, 166 neurons). Red: Mean absolute error for decoders

trained on a single day (‘0’) and tested on past/future days. (b) Fixed decoders M for multiple days d21 . . .D (‘concatenated decoders’) are fit to

concatenated excerpts from several sessions. The inset equation reflects the objective function to be minimized (Methods). Due to redundancy in the

neural code, many decoders can perform well on a single day. Although the single-day optimal decoders vary, a stable subspace with good
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Biologically achievable rates of plasticity can compensate drift,
independent of specific learning rules
Together, these analyses show that the observed dynamics of drift favor a fixed linear readout above

what would be expected for random drift. However, our results also show that a substantial compo-

nent of drift cannot be confined to the null space of a fixed downstream linear readout. We asked

how much ongoing weight change would be needed to achieve the performance of single-day

decoders while minimizing day-to-day changes in decoding weights. We first approached this with-

out assuming a specific plasticity rule, by simultaneously optimizing linear decoders for all recorded

days while penalizing the magnitude of weight change between sessions (Figure 4a,

Materials and methods: Concatenated and constrained analyses). By varying the magnitude of the

weight change penalty we interpolated between the concatenated decoder (no weight changes)

and the single-day decoders (optimal weights for each day). The result of this is shown in Figure 4b.

Performance improves rapidly once small weight changes are permitted (~12–25% per session).

Thus, relatively modest amounts of synaptic plasticity might suffice to keep encoding consistent with

changes in representation, provided a mechanism exists to implement appropriate weight changes.
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The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Concatenated decoder performance depends on the rank of the drift.

Rule et al. eLife 2020;9:e51121. DOI: https://doi.org/10.7554/eLife.51121 7 of 16

Short report Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.51121


A biologically plausible local learning rule can compensate drift
The results in Figure 4b suggest that modest amounts of synaptic plasticity could compensate for

drift, but do not suggest a biologically plausible mechanism for this compensation. Could neurons

track slow reconfiguration using locally available signals in practice? To test this, we used an adap-

tive linear neuron model based on the least mean square learning (LMS) rule (Widrow and Hoff,

1960; Widrow and Hoff, 1962) (Materials and methods). This algorithm is biologically plausible

because it only requires each synapse to access its current weight and recent prediction error

(Figure 5a, Materials and methods: Online LMS algorithm).

Figure 5b shows that this online learning rule achieved decoding performance comparable to the

offline constrained decoders. Over the timespan of the data, LMS allows a linear decoder to track

representational drift observed (Figure 5c), exhibiting weight changes of ~10%/day across all ani-

mals (learning rate 4 � 10-4/sample, Figure 5—figure supplement 1). These results suggest that

small weight changes could track representational drift in practice. In contrast, we found that LMS

struggled to match the unconstrained drift of the null model explored in Figure 3d. Calibrating the

LMS learning rate on the null model to match the mean performance seen on the true data required
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truth is plotted in black, and LMS estimate in color. Sample traces are taken from day six. Dashed traces indicate the performance of the decoder

without ongoing re-training. (d) (top) Average percent weight-change per session for online decoding of forward position (learning rate: 4 � 10-4/

sample). The horizontal axis reflects time, with vertical bars separating days. The average weight change is 10.2% per session. To visualize %Dw
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ongoing learning, the performance of the initial decoder degrades (orange). Error traces have been averaged over ten minute intervals within each
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The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Online learning with LMS: additional subjects.

Figure supplement 2. The plasticity level required to track drift varies with population size.

Figure supplement 3. Extrapolation to larger populations.
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an average weight change of 93% per day. In comparison, matching the average percent weight

change per day of 10%, the null model produced a normalized mean-squared-error of 1.3 s2 (aver-

aged over all mice), worse than chance. This further indicates that drift is highly structured, facilitat-

ing online compensation with a local learning rule.

We stress that modeling assumptions mean that these results are necessarily a proxy for the rates

of synaptic plasticity that are observed in vivo. Nonetheless, we believe these calculations are con-

servative. We were restricted to a sample of ~100–200 neurons, at least an order of magnitude less

than the typical number of inputs to a pyramidal cell in cortex. The per-synapse magnitude of plas-

ticity necessarily increases when smaller subsets are used for a readout (Figure 5—figure supple-

ment 2). One would therefore expect lower rates of plasticity for larger populations. Indeed, when

we combined neurons across mice into a large synthetic population (1238 cells), we found that the

plasticity required to achieve target error asymptotes at less than 4% per day (Figure 5—figure sup-

plement 3). Together, these results show a conservatively achievable bound on the rate of plasticity

required to compensate drift in a biologically plausible model.

Discussion
Several theories have been proposed for how stable behavior could be maintained despite ongoing

changes in connectivity and neural activity. Here, we found that representational drift occurred in

both coding and non-coding subspaces. On a timescale of a few days, redundancy in the neural pop-

ulation could accommodate a significant component of drift, assuming a biological mechanism exists

for establishing appropriate readout weights. Simulations suggested that the existence of this

approximately stable subspace were not simply a result of population redundancy, since random dif-

fusive drift quickly degraded a downstream readout. Drift being confined to a low-dimensional sub-

space is one scenario that could give rise to this, although we do not exclude other possibilities.

Nevertheless, a non-negligible component of drift resides outside the null space of a linear encoding

subspace, implying that drift will eventually destroy any fixed-weight readout.

However, we showed that this destructive component of drift could be compensated with small

and biologically realistic changes in synaptic weights, independently of any specific learning rule.

Furthermore, we provided an example of a simple and biologically plausible learning rule that can

achieve such compensation over long timescales with modest rates of plasticity. If our modeling

results are taken literally, this would suggest that a single unit with connections to ~100 PPC neurons

can accurately decode task information with modest changes in synaptic weights over many days.

This provides a concrete and quantitative analysis of the implications of drift on synaptic plasticity

and connectivity. Together, our findings provide some of the first evidence from experimental data

that representational drift could be compatible with long-term memories of learned behavioral

associations.

A natural question is whether a long-term stable subspace is supported by an unobserved subset

of neurons that have stable tuning (Clopath et al., 2017). We do not exclude this possibility because

we measured a subset of the neural population. However, over multiple samples from different ani-

mals our analyses consistently suggest that drift will reconfigure the code entirely over months. Spe-

cifically, we found that past reliability in single cells is no guarantee of future stability. This,

combined with an abundance of highly-informative cells on a single day, contributes to poor (fixed)

decoder generalization, because previously reliable cells eventually drop out or change their tuning.

Consistent with this, studies have shown that connectivity in mammalian cortex is surprisingly

dynamic. Connections between neurons change on a timescale of hours to days with a small number

of stable connections (Holtmaat et al., 2005; Minerbi et al., 2009; Holtmaat and Svoboda, 2009;

Attardo et al., 2015).

We stress that the kind of reconfiguration observed in PPC is not seen in all parts of the brain; pri-

mary sensory and motor cortices can show remarkable stability in neural representations over time

(Gallego et al., 2020). However, even if stable representations exist elsewhere in the brain, PPC still

must communicate with these areas. We suggest that a component of ongoing plasticity maintains

congruent representations across different neural circuits. Such maintenance would be important in

a distributed, adaptive system like the brain, in which multiple areas learn in parallel. How this is

achieved is the subject of intense debate (Rule et al., 2019). We hypothesize that neural circuits

have continual access to two kinds of error signals. One kind should reflect mismatch between
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internal representations and external task variables, and another should reflect prediction mismatch

between one neural circuit and another. Our study therefore motivates new experiments to search

for neural correlates of error feedback between areas, and suggests further theoretical work to

explore the consequences of such feedback.

Materials and methods

Data acquisition
The behavioral and two-photon calcium imaging data analyzed here were provided by the Harvey

lab. Details regarding the experimental subjects and methods are provided in Driscoll et al., 2017.

Virtual reality task
Details of the virtual reality environment, training protocol, and fixed association navigation task are

described in Driscoll et al., 2017. In brief, virtual reality environments were constructed and oper-

ated using the MATLAB-based ViRMEn software (Virtual Reality Mouse Engine) Harvey et al., 2012.

Data were obtained from mice that had completed the 4–8 week training program for the two-alter-

native forced choice T-maze task. The length of the virtual reality maze was fixed to have a total

length of 4.5 m. The cues were patterns on the walls (black with white dots or white with black dots),

and were followed by a gray striped ‘cue recall’ segment (2.25 m long) that was identical across trial

types.

Data preparation and pre-processing
Raw Ca2+ fluorescence videos (sample rate=5.3Hz) were corrected for motion artefacts, and individ-

ual sources of Ca2+ fluorescence were identified and extracted (Driscoll et al., 2017). Processed

data consisted of normalized Ca2+ fluorescence transients (’DF=F’) and behavioral variables (mouse

position, view angle, and velocity). Inter-trial intervals (ITIs) were removed for all subsequent analy-

ses. For offline decoding, we considered only correct trials, and all signals were centered to zero-

mean on each trial as a pre-processing step.

When considering sequences of days, we restricted analysis to units that were continuously

tracked over all days. For Figures 3 and 4, we use the following data: M1: seven sessions, 15 days,

101 neurons; M3: 10 sessions, 13 days, 114 neurons; M4: 10 sessions, 11 days, 146 neurons; M5:

seven sessions, 7 days, 112 neurons. We allowed up to two-day recording gaps between consecutive

sessions from the same mouse.

Quantification and statistical analysis
Decoding analyses
We decoded kinematics time-series x¼fx1; :::; xTg with T time-points from the vector of instanta-

neous neural population activity z¼fz1; :::; zTg, using a linear decoder with a fixed set of weights M,

that is x̂ ¼ M>
z. We used the ordinary least-squares (OLS) solution for M, which minimizes the

squared (L2) prediction error "¼kx�M>
zk2 over all time-points. For the ‘same-day’ analyses, we opti-

mize a separate Md for each day d (Figure 2), restricting analysis to sessions with at least 200 identi-

fied units. We assessed decoding performance using 10-fold cross-validation, and report the mean

absolute error, defined as j x�x̂ jh i. Here, j : j denotes the element-wise absolute value, and h:i

denotes expectation.

Best K-Subset ranking
For Figure 2d, we ranked cells in order of explained variance using a greedy algorithm. Starting

with the most predictive cell, we iteratively added the next cell that minimized the MSE under ten-

fold cross-validated linear decoding. To accelerate this procedure, we pre-computed the mean and

covariance structure for training and testing datasets. MSE fits and decoding performance can be

computed directly from these summary statistics, accelerating the several thousand evaluations

required for greedy selection. We added L2 regularization to this analysis by adding a constant lI to

the covariance matrix of the neural data. The optimal regularization strength (l = 10-4 to 10-3)

slightly reduced decoding error, but did not alter the ranking of cells.
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Extrapolation via GP regression
To qualitatively assess whether decoding performance saturates with the available number of

recorded neurons, we computed decoding performance on a sequence of random subsets of the

population of various sizes (Figure 2c,d). Results for all analyses are reported as the mean over 20

randomly-drawn neuronal sub-populations, and over all sessions that had at least N¼150 units.

Gaussian process (GP) regression was implemented in Python, using a combination of a Matérn ker-

nel and an additive white noise kernel. Kernel parameters were optimized via maximum likelihood

(Scikit-learn, Pedregosa et al., 2011).

Concatenated and constrained analyses
For both the concatenated (Figure 3b,e) and constrained analyses (Figure 4a,b), we used the set of

identified neurons included in all sessions considered. In the concatenated analyses, we solved for a

single decoder Mc for all days:

"¼
X

n

d¼1

kxd �M
>
c
zdk

2; (1)

where " denotes the quadratic objective function to be minimized. In the constrained analysis, we

optimized a series of different weights M¼fM1; :::;MDg for each day d21:::D, and added an adjust-

able L2 penalty l on the change in weights across days. This problem reduces to the ‘same-day’

analysis for l¼0, and approaches the concatenated decoder as l approaches 1:

"¼ ð1�lÞ
X

n

d¼1

kxd�M
>
d
zdk

2 þl
X

n�1

d¼1

kMdþ1�Mdk
2: (2)

For the purposes of the constrained analysis, missing days were ignored and the remaining days

treated as if they were contiguous. Two sessions were missing from the 10 and 14 day spans for

mice 3 and 4, respectively (Figure 4b). Figure 3c also shows the expected performance of a

concatenated decoder for completely unrelated neural codes. To assess this, we permuted neuronal

identities within individual sessions, so that each day uses a different ”code’.

Null model
We developed a null model to assess whether the performance of the concatenated decoder was

consistent with random drift. For this, we matched the amount of day-to-day drift based on the rate

at which single-day decoders degrade. We also sampled neural states from the true data to preserve

sparsity and correlation statistics. The null model related neural activity to a ’fake’ observable read-

out (e.g. mouse position) via an arbitrary linear mapping. The null model changed from day to day,

reflecting drift in the neural code. The fidelity of single day and across day decoders in inferring a

readout from the null model was matched to the true data.

For each animal, we take the matrix z 2 Rn�d of mean-centered neural activity on day one, where

n represents the number of recorded neurons and d represents the number of datapoints. We relate

this matrix to pseudo-observations of mouse position z via a null model of the form zr¼M>
r
zþ�r,

where M>
r
; �r 2 R

1�n. Note that r indexes days. The vector �r is generated as scaled i.i.d. Gaussian

noise. We scale �r such that the accuracy of a linear decoder trained on the data ðz; xrÞ matches the

average (over days) accuracy of a single-day decoder trained on the true data.

Next, we consider the choice of the randomly-drifting readout, Mr. On day one, M1 is generated

as a vector of uniform random variables on ½0; 1�. Given Mr, we desire an Mrþ1 that satisfies.

. kMrþ1k2 ¼ kMrk2.

. The expected coefficient of multiple correlation of xrþ1 ¼ M>
rþ1

z against the predictive model

M>
r
z (between day R2) matches the average (over days) of the equivalent statistic generated

from the true data.

To do this, we first generate a candidate DM0
r
2 Rn�1 as a vector of i.i.d. white noise. The compo-

nents of DM0
r
orthogonal and parallel to Mr are then scaled so that Mrþ1 ¼ Mr þ DMr satisfies the con-

straints above.
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In Figure 4—figure supplement 1, a modification of the null model that confined inter-day

model drift to a predefined subspace was used. Before simulating the null model over days, we ran-

domly chose k orthogonal basis vectors, representing a k-dimensional subspace. We then searched

for a candidate DM 0
r
, on each inter-day interval, that was representable as a weighted sum of these

basis vectors. This requirement was in addition to those previously posed. Finding such a DM0
r
corre-

sponds to solving a quadratically-constrained quadratic program. This is non-convex, and thus a

solution will not necessarily be found. However, solutions were always found in practice. We used

unit Gaussian random variables as our initial guesses for each component of DM0
r
, before solving the

quadratic program using the IPOPT toolbox (Wächter and Biegler, 2006).

Drift alignment
We examine how much drift aligns with noise correlations verses directions of neural activity that

vary with the task (’behavior-coding directions’). We define an alignment statistic � that reflects how

much drift projects onto a given subspace (i.e. noise vs. behavior). We normalize � so that 0 reflects

chance-level alignment and one reflects perfect alignment of the drift with the largest eigenvector of

a given subspace (e.g. the principal eigenvector of the noise covariance).

Let zðxÞ denote the neural population activity, where x reflects a normalized measure of maze

location, akin to trial pseudotime. Define drift D�zðxÞ as the change in the mean neural activity �zðxÞ

across days. We examine how much drift aligns with noise correlations verses directions of neural

activity that vary with task pseudotime (dzðxÞ=dx).

To measure the alignment of a drift vector D� with the distribution of inter-trial variability (i.e.

noise), we consider the trial-averaged mean m and covariance S of the neural activity (log calcium-

fluorescence signals filtered between 0.03 and .3 Hz and z-scored), conditioned on trial location and

the current/previous cue direction. We use the mean squared magnitude of the dot product

between the change in trial-conditioned means between days (D�), with the directions of inter-trial

variability (Dz¼z�<z>) on the first day, which is summarized by the product D�>SD�:

jD�>Dzj2
D E

¼ D�>DzDz>D�

 �

¼ D�> DzDz>

 �

D�

¼ D�>SD�:

(3)

To compare pairs of sessions with different amounts of drift and variability, we normalize the drift

vector to unit length, and normalize the trial-conditioned covariance by its largest eigenvalue lmax:

f2

trial ¼
D�>SD�

jD�j2 �lmax

(4)

The statistic ftrial equals one if the drift aligns perfectly with the direction of largest inter-trial vari-

ability, and can be interpreted as the fraction of drift explained by the directions of noise

correlations.

Random drift can still align with some directions by chance, and the mean squared dot-product

between two randomly-oriented D-dimensional unit vectors scales as 1=D. Accounting for the contri-

bution from each dimension of S, the expected chance alignment is therefore f2

0
¼ trðSÞ=ðD � lmaxÞ.

We normalize the alignment coefficient �noise such that it is 0 for randomly oriented vectors, and one

if the drift aligns perfectly with the direction of largest variability:

�noise ¼
ftrial �f0

1�f0

(5)

We define a similar alignment statistic �coding to assess how drift aligns with directions of neural

variability that encode location. We consider the root-mean-squared dot product between the drift

D�, and the directions of neural activity (z) that vary with location (x) on a given trial, that is rxzðxÞ:
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D�>rxzðxÞj
2

D E

¼ D�>½rxzðxÞ�½rxzðxÞ�
>D�

D E

¼ D�> ½rxzðxÞ�½rxzðxÞ�
>

D E

D�

¼ D�> Srþ�r�
>
r

� �

D�

(6)

In contrast to the trial-to-trial variability statistic, this statistic depends on the second moment

Srþ�r�
>
r, where rxzðxÞ~Nð�r;SrÞ. We define a normalized f2

coding and �coding similarly to f2

trial and

�noise. For the alignment of drift with behavior, we observed �coding¼ 0.11–0.24 (m=0.15, s=0.03),

which was significantly above chance for all mice. In contrast, the 95th percentile for chance align-

ment (i.e. random drift) ranged from 0.06 to 0.10 (m=0.07, s=0.02). Drift aligned substantially more

with noise correlations, with r=0.29–0.43 (m=0.36, s=0.04).

Online LMS algorithm
The Least Mean-Squares (LMS) algorithm is an online approach to training and updating a linear

decoder, and corresponds to stochastic gradient-descent (Figure 4a). The algorithm was originally

introduced in Widrow and Hoff, 1960; Widrow and Hoff, 1962; Widrow and Stearns, 1985.

Briefly, LMS computes a prediction error for an affine decoder (i.e. a linear decoder with a constant

offset feature or bias parameter) at every time-point, which is then used to update the decoding

weights. We analyzed twelve contiguous sessions from mouse 4 (144 units in common), and initial-

ized the decoder by training on the first two sessions using OLS.

By varying the learning rate, we obtained a trade-off (Figure 4b) between the rate of weight

changes and the decoding error, with the most rapid learning rates exceeding the performance of

offline (static) decoders. In Figure 4d, we selected an example with a learning rate of h¼4�10
�4. To

provide a continuous visualization of the rate of weight change in Figure 4d, we used a sliding dif-

ference with a duration matching the average session length. This was normalized by the average

weight magnitude to report percent weight change per day. In all other statistics, per-day weight

change is assessed as the difference in weights at the end of each session, divided by the days

between the sessions.

Data and code availability
Datasets recorded in Driscoll et al., 2017 are available from the Dryad repository (https://doi.org/

10.5061/dryad.gqnk98sjq). The analysis code generated during this study is available on Github

(https://github.com/michaelerule/stable-task-information; copy archived at https://github.com/elifes-

ciences-publications/stable-task-information; Rule, 2020).
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