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Abstract
Recent work has revealed that the neural activity patterns
correlated with sensation, cognition, and action often are not
stable and instead undergo large scale changes over days and
weeks—a phenomenon called representational drift. Here, we
highlight recent observations of drift, how drift is unlikely to be
explained by experimental confounds, and how the brain can
likely compensate for drift to allow stable computation. We
propose that drift might have important roles in neural
computation to allow continual learning, both for separating
and relating memories that occur at distinct times. Finally, we
present an outlook on future experimental directions that are
needed to further characterize drift and to test emerging the-
ories for drift’s role in computation.
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Recent advances in experimental recording techniques
have made it possible to record large populations of
neurons with high spatial resolution [1,2,3]. This has
facilitated improvements in methods for tracking ac-

tivity of the same neurons across days and weeks,
providing insight into how population activity may
change over timescales exceeding the typical length of
a recording session [4,5]. Data from both hippocampus
www.sciencedirect.com
and neocortex have revealed that, on the timescale of
several days, many neurons maintain consistent activity
patterns [6,7]. However, neural activity correlations
with sensory and behavioral variables such as presented
stimuli, environmental cues, or actions can drastically
change over a period of weeks [8,9,10,11,12,13]. A
small number of neurons make mostly discrete changes
from one day to the next. This means that correlations

of neural activity with environmental and behavioral
variables are mostly stable over this short time-window.
Over the course of weeks, however, a slow and gradual
accumulation of change at the population level results
in changing correlations between the activity of the
recorded population of neurons and these variables.

Cells whose activity was previously correlated with
environmental and behavioral variables are most
frequently no longer active in response to the same
variables weeks later. At the same time, a mostly new

pool of neurons develops activity patterns correlated
with these variables. Less commonly, cells previously
correlated with certain variables become correlated with
new variables. In one example of these findings, as mice
move through an environment, a subpopulation of hip-
pocampal place cells are informative about the animal’s
spatial position. Over time, the pool of place cells that
make up this spatial code changes, despite the envi-
ronment staying the same [13]. These features of neural
data have been reported even in the context of an animal
stably performing a learned behavioral task equally well

over weeks, in a brain region shown to be necessary for
the task [8]. While few neurons maintain their activity
patterns over weeks, population level statistics such as
the fraction of task-correlated neurons and the overall
activity levels in the population remain largely un-
changed [8,14,15,10,11,12,13].

This phenomenon has been observed using both cal-
cium imaging and electrophysiology in relation to a
diverse set of stimuli and behaviors in the hippocampus
[9,11,13] (although see Ref. [16]), posterior parietal

cortex [8], anterior piriform cortex [12], and even pri-
mary visual cortex [17,10]. Drift has generally not been
observed in motor areas [18,19,20,21] (although see
Refs. [22,23]). In addition to these experimental re-
sults, theoretical work has focused on how these changes
may arise, how downstream areas may overcome
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2 Systems Neuroscience
nonstationarities upstream, as well as potential compu-
tational benefits [24,25,26,23,27,28].

For consistency with previous work, we refer to this
phenomenon as representational drift [27]. We note,
however, that the terms “representation” and “drift”
both make assumptions about the nature of changes in
neural activity and potentially limit possible explana-

tions for this phenomenon. Representational drift sug-
gests that the brain has an internal map, or
representation, of the external world that changes over
time. However, brain activity evolves in time to perform
computations on internal variables that extend beyond
creating representations of the external world [29,30].
For example, if an animal is trained to navigate to the
right in response to a given stimulus, the brain does not
necessarily need to represent the stimulus. Rather, some
evolution of neural activity must result in an eventual
right turn. While representations can be useful for

flexibility and generalization and may be appropriate
descriptions of neural activity in some brain areas, it is
unlikely that a snapshot of neural activity in all brain
areas is best considered as a representation of a stimulus
[31,32]. Therefore, although the term “representation”
is convenient for naming this phenomenon, the impli-
cations limit the scope of potential explanations. We
argue that reframing neural activity as interacting with
the world, rather than representing it, may be critical in
revealing how gradual changes in the relationship be-
tween neural activity and the environment reflect a

continuously evolving dynamical system. Additionally,
while drift has specific meanings in physics, including
distinctions from diffusion, we propose that the exact
form of the changes needs further characterization.

In this review, we discuss recently proposed alternative
explanations of representational drift, review how the
brain might overcome nonstationarities, and propose a
computational role for drift in continual learning. We
end with an outlook on future work to move toward a
better understanding of the properties and functions
of drift.
Alternate explanations for representational
drift
There have been several proposals for how experimental
confounds could explain the observed changes in neural

activity patterns across time. In this section, we review
these proposals but argue that they are unlikely to fully
account for representational drift.

First, long term recordings damage neural tissue due to
the implantation of electrophysiology probes [33], cra-
nial window surgeries [34], or long-term expression of
calcium indicators [35]. However, electrical and optical
recording methods have revealed drift with similar rates
and statistics, even though their effects on tissue
Current Opinion in Neurobiology 2022, 76:102609
damage might be expected to occur at different rates
and scales [17]. The drift rate is often constant over
weeks, suggesting it is a steady-state phenomenon
instead of a response to a specific event. Further, and
perhaps most convincingly, drift rates in the same animal
can differ across contexts [12].

Second, identifying the same cells across days is chal-

lenging. Cells are identified in electrical recordings
based on the action potential waveform, which can have
similar shapes for different cells. Even continuous re-
cordings suffer from movement of the brain relative to
the electrode. Optical imaging relies on matching cells
across days based on their spatial fluorescence profile,
which can be difficult if indicator expression is unstable
or low. Optical tracking of cells is especially difficult if
supra-cellular resolution imaging methods are used.
However, in some cases, researchers have gone to great
lengths to ensure the reliable identification of neurons,

through painstaking visual inspection of each individual
neuron in imaging data [8] and extensive electrophysi-
ological validation [18,12,3]. Furthermore, drift rates
vary depending on the familiarity of sensory stimuli,
suggesting that drift is related to factors other than cell
identity assignments [12].

Third, it is possible that while neural activity is corre-
lated with measured environmental and behavioral var-
iables, this activity is only computationally relevant for
variables that are not measured [36]. In this case, neural

activity may be stable and only appear to drift due to
erroneous inference of the neural activityebehavior
relationship. To mitigate these confounding factors,
some experiments have recorded a large number of
external variables and modeled each neuron’s activity as
a function of these variables [8]. Even in this case, drift
was still identified. In these models, time was more
predictive of a neuron’s activity levels over weeks than
were behavioral variables. In addition, perturbations of
the recorded region impact behavioral performance in a
manner consistent with causal influence of neural ac-
tivity on measured behavior, lending support to the

validity of the correlations studied. Behavioral con-
founds are a difficult problem to rule out completely.
Great efforts must be taken to record and model as many
features of behavior as possible to better understand the
evolving relationship between neuronal activity and
behavior [16,37,38,39,40,41].
Does representational drift create
challenges for stable behavior?
The brain is not made of silicon [42]. Synaptic con-
nections in many parts of the brain are not stable over
long time periods and instead turn over at high rates,
even with complete turnover in a month in the hippo-
campus [43]. However, a subset of cortical spines
nonetheless appears to be stable over extended periods
www.sciencedirect.com
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Representational drift: Emerging theories Driscoll et al. 3
[44]. Most biological elements exhibit turnover,
including the proteins that make up synapses and define
the strength and signaling of synapses [45,46,47]. Bio-
logical systems therefore have homeostatic mechanisms
to take advantage of under-constrained variables in the
system in order to maintain consistency in crucial fea-
tures of cells and networks [48]. Representational drift
could arise for this reason and thus be a biological

inevitability. In this case, drift might be a nuisance that
the brain needs to overcome, instead of a feature for
computation. However, it is possible that drift could
reflect both challenges and benefits for computation,
since computational strategies have evolved in the
presence of these biological constraints.

Recent work has examined if drift creates challenges for
the nervous system to encode and decode behaviorally
relevant information. In high dimensional systems, such
as a large population of neurons, random changes in

neural activity patterns might be expected due to
turnover of biological elements [49]. These changes are
likely to occur in dimensions separate from those rele-
vant to low-dimensional cognitive computations
[50,51,23,52]. This is because most dimensions in a
high-dimensional space are nearly orthogonal to one
another. However, populations of neurons likely code for
many different features [53,40], making it unclear if
drift would be mostly orthogonal to all these coding
dimensions. Experimental evidence indicates that drift
impacts coding of environmental and behavioral vari-

ables and thus is not strictly confined to “null” di-
mensions [8,28]. If these changes go uncorrected, then
decoding in a neural population appears to degrade over
the time course of several weeks, indicating that the
nervous system must have methods to counteract drift.
Theoretical work demonstrates that drift could be
compensated by synaptic plasticity mechanisms that
only require small weight changes over several days to
maintain a stable readout of information by a down-
stream network [28,54]. However, the regulatory
mechanisms that could coordinate these changes
are unknown.
Theoretical proposals of mechanisms
underlying representational drift
Since the discovery of representational drift in neural
data, theoretical works have put forward proposals for

network level mechanisms that could result in repre-
sentational drift. Most of this work focuses on noisy
synaptic weight updates that evolve to minimize an
overall objective function of the network under Hebbian
or anti-Hebbian plasticity [55,56,57,58,26,59].
Stochasticity prevents the network from ever fully
converging to a stable solution, which can lead to a
diffusion around a local optimum in weight space [56] or
exploration of multiple local optima relating to redun-
dant solutions of the overall objective function [59]. It
www.sciencedirect.com
has been proposed that this could have a role in gener-
alization performance and probabilistic computation
[55,58]. Characterization of dynamical systems in the
context of changes in synaptic efficacy reveals that time
varying attractors are easier to maintain than fixed points
[60]. Recently, it has also been proposed that drift could
have computational benefits during learning as a regu-
larization strategy similar to drop-out in artificial neural

networks [61,62]. It will be of interest to explore how
drift may be related to continual learning under chang-
ing objective functions with varying task demands.
Drift as a useful feature for neural
computation in the context of continual
learning
It is currently unknown whether representational drift is
merely a nuisance that the brain needs to overcome or if
it may also serve a specific purpose with potential
computational benefits. Theories of learning in network
models have long considered a plasticity-stability
tradeoff for memory capacity [63,64,25]. It has been
proposed that memories are actively or passively reor-
ganized over time for optimal storage [65]. Modeling
this process of reorganization has been the subject of

several theoretical studies [66,65,67,68]. Similar con-
siderations about plasticity and stability may also play an
important role in studying representational drift as a
useful feature for learning. Recent work on memory
allocation and consolidation may present a way to link
this body of theoretical work to observations about
representational drift.

The memory allocation hypothesis states that neurons
with high excitability are more likely to be recruited for
memory encoding [69,70]. The pool of active neurons
that participate in computation changes over time, in

part due to changes in the excitability of neurons [71].
Thus, at any given time, the pool of “excitable” neu-
rons is the one that will learn new associations [72].
This framework implies that drift might be relevant for
continual learning in order to avoid catastrophic
forgetting that might occur if new memories are
incorporated into indiscriminate sets of neurons and
synapses. Drift could play a role in continual learning by
allowing for learning without interference with previ-
ously learned associations [73]. By continuously
updating the pool of active neurons, new information

could be incorporated into distinct computational re-
sources that do not interfere with previously learned
information [74,75,11].

Another aspect of the memory allocation hypothesis is
that drift could be a key feature of consolidation, linking
memories that are separated in time [76,77,78,79].
Artificial neural networks trained to perform related and
interfering computations utilize shared resources for
similar computations [74]. It might be beneficial for
Current Opinion in Neurobiology 2022, 76:102609
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related associations to share similar neural resources,
even if they were learned at different times. This would
suggest that new information should eventually be
stored in a similar reference frame to previously learned
associations. Drift enforces a baseline malleability,
constantly updating the structure and organization of
computation (see Fig. 1). Thus, as memories are
rehearsed or revisited, either actively through experi-

ence or inactively during replay events, memories could
be transferred to new sets of neurons [25]. This
continuous update in the neurons that perform
computation could result in the merging of new and old
associations when appropriate. Both associations would
merge into the “excitable” pool of neurons. Indeed, as
mice continued to practice a navigation decision task,
the population of neurons in the posterior parietal cortex
that coded for new cues were overlapping with neurons
most recently active on familiar cue trials [8]. In this
framework, by continuously rewriting memories as they

are revisited, new information ultimately leads to
refined and improved memories and internal models. A
prediction of this hypothesis would be that neurons
important for both previously learned and novel com-
putations are those that are newly active (Fig. 2).
Figure 1

Dynamically reconfigured computations may be implemented by differe
trons in a lattice of positively charged metal ions. In either case, the identities
properties of the system such as population dynamics, or the overall charge
system that must be maintained over time. It is easier to imagine how new ta
compared to one that maintains a rigid and fixed relationship between inputs a
where the relationships between molecules must be broken down in order to

Current Opinion in Neurobiology 2022, 76:102609
Thus, in some cases, it might be beneficial to maintain
new and old memories in separate sets of neurons in
order to ensure separability of these memories. Alter-
natively, by continually rewriting memories as they are
revisited, new learning could refine internal models and
establish a compatible reference frame for relating new
and old information. Drift could play a role in both these
functions for continual learning.

In addition, the brain does not need to maintain a per-
fect memory of every learned association. Drift could
add noise so that associations that do not continue to be
useful are not updated and therefore are forgotten. Drift
could thus provide a mechanism for forgetting infor-
mation that is no longer useful to guide future behaviors.
Experimental challenges for the future
Although many observations of drift have been reported,
much more experimental work is needed to systemati-
cally and quantitatively characterize drift, including
comparisons across brain regions, cell types, and learning
conditions. Furthermore, while theoretical frameworks
have been developed to better understand the
nt neurons over time. This idea is somewhat analogous to shared elec-
of the neurons and the electrons are both irrelevant. Rather, emergent

of negatively and positively charged metal ions are crucial features of the
sks and memories might be ‘mixed’ into a continuously evolving system
nd outputs. This alternative rigid structure is analogous to a crystal lattice,
make any changes to the system.

www.sciencedirect.com
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Figure 2

As the pool of active cells changes on each day, the manifold of network activity patterns shifts and rotates in neural state space (day 1 to day
2). We propose that shifts and rotations in the position of the manifold occur during baseline maintenance of previously learned computations. New
learning results in changes in the geometry of the neural manifold (day K). To prevent manifold changes from interfering with previously learned
computation, new features might be added in orthogonal dimensions. When a new pool of excitable cells develops activity correlations with the new
features that are learned, manifold changes are orthogonal to previously learned dimensions that were encoded by previously excitable cells. This
orthogonal change would allow for continual learning without changes to previously learned dimensions of continuously drifting manifolds.
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computational implications of drift, if possible, drift
must be manipulated to test these ideas.

A comprehensive study of the drift rate across brain
regions in the context of the same task and during
tasks with different levels of complexity could be
highly informative about the cause and function of
drift. Relating drift rates across regions is challenging
when comparing across studies, stimuli, and tasks.
Therefore, experiments are needed to measure drift
rates in multiple brain regions in the same animal,
with the same measurement and analysis techniques,
and during the identical stimuli and tasks. If drift is

similar across areas, then we might interpret this
finding as drift being an inevitability of biological
networks. Instead, if drift is slower in areas more
closely related to the external world, including areas
involved in processing sensory stimuli or generating
motor outputs, and highest in association areas, then
theories relating drift to continual association learning
www.sciencedirect.com
might be favored. Other causes of different drift rates
might include different connectivity patterns, cell

types, or input statistics. It has not been examined if
different cell types drift at different rates, including
cells with specific projection targets or molecu-
lar profiles.

Drift rates might differ for different kinds of behavioral
variables. While we know that different areas of the
brain preferentially encode different types of variables,
recent work has shown that each cortical area often
encodes a diversity of sensory, cognitive, and motor
variables [53,40]. Rather than considering drift as a

property of a brain region, it will be interesting to
determine if some variables are encoded in a more stable
way than others in the same region. In this case, we
might predict that drift rates differ for neurons or syn-
apses depending on what they encode. For example, in
V1, we might expect that feedforward inputs for build-
ing sensory representations might have a high degree of
Current Opinion in Neurobiology 2022, 76:102609
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stability, whereas recurrent intracortical inputs to V1
that mediate visual learning might have faster drift
rates [10].

Beyond these factors, it is important to test whether the
experience of an animal is a key factor that could
contribute to drift rates in order to understand if drift
plays a role in learning and consolidation. Recent work

has shown that the frequency of an odor stimulus, but
not its valence, affects drift rate in the piriform cortex
[12]. These findings are suggestive that continuous in-
teractions with a particular stimulus might stabilize
representations as they continue to be relevant in the
environment, which is consistent with previous work in
the hippocampus [9,80,81]. Some of the most striking
examples of stability in the relationship between neural
activity and behavior have been discovered in animals
producing highly stereotyped behaviors [19,20,16]. It
will be of interest to determine whether the stability

reported in motor areas depends on the familiarity of the
stereotyped behaviors or the sensitivity of the stereo-
typed behavioral output to small changes in neural ac-
tivity. Further experiments will be needed to
understand whether drift rate varies according to the
relevance of a behavioral variable in other settings. In
the context of learning, it will be interesting to assess
whether codes for variables that have been associated
during the course of learning develop coordinated drift
kinetics. Determining whether enriched versus impov-
erished home cages or the age of an animal relates to

drift may help test a role of drift in learning [82].

Ultimately, the best test of the proposed roles for drift in
computation would be experiments to manipulate the
drift rate. Several ideas have emerged on how this might
be done. One possibility is that drift could be stabilized
in a brain-machine interface in which decoders require
stable activity to function across days [83,84]. Another
possibility is that drift could be altered with optogenetic
or genetic manipulations. Optogenetics, in particular
with cellular resolution targeting, may allow an experi-
menter to change the “excitability” of targeted neurons

to force them into or out of the “excitable” population
[85,86]. A genetic manipulation could involve altering
the expression of ion channels that control cellular
excitability, which studies have suggested are important
for the turnover in the “excitable” pool of neurons
[76,87,88]. If perturbations that decrease the drift rate
result in lessened behavioral flexibility, such results
would support the idea that representational drift is
useful for continual learning.

Finally, experiments are necessary to connect the

phenomenon of drift to other established principles in
learning and memory. As just one example, memory
engrams are a prominent concept for hippocampal
Current Opinion in Neurobiology 2022, 76:102609
memory [89]. Although engrams are often discussed
in a manner that presupposes stability of neural ac-
tivity patterns and synaptic connections over time,
recent work suggests that dynamic neural ensembles
contribute to engrams [90]. Is it possible to connect
drift and engrams into a unified concept? As a starting
point, it will be of interest to know if engram neurons,
which are typically labeled by induction of the im-

mediate early gene c-fos, have lower drift than
neighboring neurons. Additionally, if there is drift in
the engram population, then it will be of interest to
determine if there are mechanisms to transition the
memory trace across different populations of neurons.
This transition would effectively bind together “old”
and “new” engram cells for a single memory; in which
case, an engram might be an ever-evolving population
of neurons [70,90].

In summary, exciting progress has been made to

demonstrate that drift is a common phenomenon, with a
recent surge in studies observing drift. Inspiring ideas
from theory have emerged about the potential compu-
tational implications and functions of drift, providing a
rich conceptual foundation. However, the study of
representational drift is still in its infancy. The next
steps will require a deeper experimental characteriza-
tion of drift, attempts to identify testable distinctions
between different theoretical proposals, and ultimately
a close iteration of the emerging experimental and
theoretical investigations into drift.
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